Freeze Avoidance in a Mammal: Body Temperatures Below 0°C in an Arctic Hibernator

BRIAN M. BARNES

Hibernating arctic ground squirrels, *Spermophilus parryii*, were able to adopt and spontaneously arouse from core body temperatures as low as −2.9°C without freezing. Abdominal body temperatures of ground squirrels hibernating in outdoor burrows were recorded with temperature-sensitive radiotransmitter implants. Body temperatures and soil temperatures at hibernaculum depth reached average minima during February of −1.9° and −6°C, respectively. Laboratory-housed ground squirrels hibernating in ambient temperatures of −4.3°C maintained above 0°C thoracic temperatures but decreased colonic temperatures to as low as −1.3°C. Plasma sampled from animals with below 0°C body temperatures had normal solute concentrations and showed no evidence of containing antifreeze molecules.

Hibernation in mammals is expressed by a fall in body temperature (Tb) to near the ambient temperature of the hibernaculum. Torpid animals maintain low Tb’s for up to several weeks until a brief (<24 hours) spontaneous arousal to high Tb occurs, after which animals recoup. The lowest Tb’s previously reported for natural hibernation in a variety of mammalian hibernators are between 0.5° and 2°C and in ambient conditions of 0° to 3°C (1). In experimental conditions, slowly lowering ambient temperatures below 0°C leads either to an increase in an animal’s metabolism and stabilization of Tb or an “alarm arousal” after which the animal, upon returning to torpor, will actively regulate Tb at 2° to 3°C (2). Some ectothermic vertebrates can endure subzero Tb’s either by avoiding or tolerating freezing. For example, many species of polar and north temperate fish, through use of blood antifreeze proteins or glycoproteins, live at temperatures of −1.9°C (3), and painted turtles and four species of frogs can pass the winter frozen at temperatures of −3° to −7°C (4). Accounts of endotherms surviving subzero Tb’s are either anecdotal (5) or describe the artificial induction of subzero body temperatures, a condition from which the animal could not independently arouse (6). I report telemetric and direct evidence of the regular, prolonged, and spontaneously reversible adoption of core Tb of as low as −2.9°C in the arctic ground squirrel, *Spermophilus parryii*, hibernating in outdoor enclosures.

Arctic ground squirrels were captured during late August 1987 in the northern foothills of the Brooks Range, Alaska, near the Toolik Field Station of the University of Alaska Fairbanks (68°38′N, 149°38′W; elevation 809 m) and transported to Fairbanks. Animals were implanted abdominally with miniature temperature-sensitive radiotransmitters that had been previously calibrated (7). On 19 September 1987, seven males and five females were released in Fairbanks into outdoor wire cages (0.9 by 0.9 by 1.8 m, buried to 1.3 m) where they dug burrows and remained for the next 8 months (8). Each cage was fitted with copper wire loop antennas (two or four each) housed in plastic pipe and connected to coaxial leads. Each lead was connected to a radio receiver with an interface to a computerized data acquisition system (9). Bandpass filters were used to overcome radio interference from a local AM radio station, and data collection began in mid-February 1988. In spring, after each animal emerged from the hibernaculum, transmitters were recovered and recalibrated (10). Soil and air temperatures at the site were recorded with thermocouples and a thermocouple thermometer. To determine the temperature regimes arctic ground squirrels experience during hibernation in the environment at which they were collected, soil temperatures at a depth of 1.0 m at two natural burrow sites near the Toolik Field Station were recorded over winter on automated remote recorders (11).

Minimum Tb’s of six hibernating ground squirrels occurred in February and March and averaged −1.9° ± 0.3°C (range −2.9° to −1.1°C). The Tb of the individual that reached the lowest Tb (−2.9°C) is shown...
lower than −7°C. Nest chambers where animals hibernated in the experimental burrows were excavated: the spherical nests were constructed of straw, approximately 30 cm in diameter, and usually located in a corner of the cage at 1.2 ± 0.05 m depth. Depth of natural hibernaculum are limited by the permafrost table; ground squirrels appear not to dig into frozen ground (13). The permafrost table lies between 25 and 100 cm deep over most of Northern Alaska (14).

To reproduce conditions of freeze avoidance under laboratory conditions, arctic ground squirrels were housed in an environmental chamber whose temperature was gradually reduced in fall 1988 from 5°C to −4.3°C during 1 month. Body temperatures of hibernating animals were measured at several locations, and blood was sampled by cardiac puncture from individuals that exhibited subzero rectal temperatures. Plasma was separated from blood cells, measured for solute concentration (15), and screened for the presence of antifreeze properties by testing for thermal hysteresis of melting and freezing points (16).

In ambient temperatures of −4.3°C arctic ground squirrels adopted colonic, foot, and subcutaneous temperatures that ranged from −1.3°C to 0°C, and maintained oral and thoracic temperatures of −0.70°C to 0.7°C (Fig. 2). Thus, under these conditions hibernating ground squirrels had heterogeneous Tb’s and typically sustained across body temperature gradients of 1°C to 2°C. Subzero body parts seemed fully perfused as subdermal wounds inflicted on toes and abdominal skin bled promptly. In six animals with colonic temperatures averaging −0.63°C, concentrations of plasma solutes were normal (302 ± 4.4 mmol/kg), and freezing and melting points of plasma were not different (−0.59 ± 0.02°C and −0.56 ± 0.01°C, respectively) and were similar to equilibrium freezing points of blood in nonhibernating mammals (17).

Animals withstand body temperatures below the freezing point of water by being freeze tolerant (4), by solute-dependent freezing point depression (18), by using antifreeze molecules (3), or by supercooling (19). There was no evidence of an exotherm (thermal heat of fusion) at subzero Tb’s, which indicates that body water did not freeze. Plasma solute concentrations measured in ground squirrels with subzero deep body temperatures would have offered protection from freezing to temperature of approximately −0.6°C, but for the core temperatures measured of −1.3°C to −2.9°C a further mechanism of freeze avoidance must be offered. Antifreeze molecules depress freezing points relative to melting points by providing resistance to the growth of ice crystals (3). Freezing and melting points of plasma taken from ground squirrels hibernating at ambient temperatures of −4.3°C were equal, indicating that, under these conditions, antifreeze substances are not present. By exclusion this leaves supercooling, which is a metastable state of below freezing temperatures that persists in the absence of a nucleator which would readily instigate crystallization (20). Rats, hamsters, and other small mammals can be artificially supercooled to colonic temperatures of −2.5°C to −5.5°C, with up to 100% survival after they are artificially rewarmed and resuscitated (6). However, the tenure of subzero Tb in such supercooled animals must be brief (<60 min); if it is prolonged, spontaneous crystallization occurs and partially frozen animals usually (but not always) cannot be revived. Arctic ground squirrels in this study maintained subzero Tb’s for more than 3 weeks.

The ability of arctic ground squirrels to undergo deep and prolonged supercooling is a new finding, despite several decades of measuring Tb’s in diverse species of hibernating birds and mammals (21). This ability may relate to the prolonged and extreme conditions under which arctic ground squirrels must overwinter: 8 to 10 months within the hibernaculum with soil temperatures at nest depth declining to −18°C. Dormant seasons for other species of hibernators are
usually shorter and recorded hibernaculum temperatures remain above freezing (22).

Supercooling to near −3°C should offer energetic advantages over maintaining greater than 0°C Tθ’s to ground squirrels hibernating at ambient temperatures substantially below −0°C. Few metabolic measurements have been made of hibernators maintained in subzero conditions and none have been made for animals with below 0°C Tθ. However, extrapolating from existing data on the greatly elevated metabolic costs of hibernators that maintain above 0°C Tθ’s at ambient temperatures of 0°C and −2°C (23) suggests that supercooling to −3°C might save ten times the energy expended by maintaining above 0°C Tθ (24). Any metabolic savings accrued over the hibernation season would be advantageous to ground squirrels—presumably in the forms of increased overwinter survivorship and of energy stores left after hibernation for use during the short but frenetic reproductive season that begins at emergence from hibernation.

REFERENCES AND NOTES


7. Transmitters (model VM-FH disk, Mini-Mitter Co., Inc., Sunriver, OR) were implanted in animals anesthetized with methoxyflurane (Metofane, Pitman-Moore, Washington Crossing, NJ). Animal care was in accordance with University of Arizona Animal Use and Care Committee guidelines.

8. Ten of 12 animals recovered to emergence without signal transmission, at the same time that one of the transmitters had failed to activate during winter hibernation.


10. Transmitters were reactivated in a refrigerated alcohol-water bath over the range of −4°C to +2°C within 24 hours of recovery from each animal. Computed temperatures based on initial calibration values were verified by measurements at each animal's body temperature at rest point, as described in T. E. Osterhage (Calibration and field use of high-resolution thermometers for precise temperature measurements near 0°C) (Geophysical Institute, Fairbanks, AK, 1977). The total uncertainty for the thermoplastic relative to International Practical Temperature Scale was ±0.025°C (Brooklyn Thermometer Co., Test No. 221378). Computed temperatures averaged 0.09°C high (range = −0.39°C to +0.60°C). Data presented are corrected to reflect the recalibration values.


15. Plasma volumes of 10 μl were measured for solute concentration with a Wescor 5500 Vapor Pressure Osmometer (Logan, UT).

10.1089/1989.00000195

16. Ice crystal melting temperatures and ice crystal growing temperatures were measured in plasma volumes of 20 μl after a small seed crystal was introduced by spray freezing. Procedures are described by A. L. DeVries [Methods Enzymol. 127, 293 (1986)].


24. This estimate results from extrapolating metabolic costs of dormancy shown by Geiser and Kenagy (23) to an ambient temperature of –10°C and a Tθ of either 0°C or –3°C. At ambient temperatures below Tθ greater than Q10 effects [see K. Schmidt-Nielsen, Animal Physiology: Adaptation and Environment (Cambridge Univ. Press, Cambridge, 1979), p. 207] on metabolism are seen as animals must produce heat to maintain a gradient between body and ambient temperatures. The extent of energy savings due to supercooling would depend on the proportion of metabolically active tissue that attains the supercooled state. Since measurements of body temperatures in hibernators at an ambient temperature of –4.5°C suggest that only posterior regions supercool, and since the most metabolically active tissues during torpor likely reside in the anterior of the body (heart, brain, brown adipose tissue), then energetic advantages of partial supercooling over maintaining above 0°C temperatures throughout the body may be significantly less than this estimate.

25. Supported by NIH grant HD 33833. I thank H. A. Maier, A. S. Porchez, and A. D. York for assistance, D. Borchert for the drawing, and A. D. York, G. J. Kenagy, L. K. Miller, and R. Elsner for reading the manuscript.

8 February 1989; accepted 26 April 1989